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Abstract. Answer set programming (ASP) is a successful problem solving ap-
proach of today that has been supported both scientifically and technologically
by several solvers, ongoing active research and various implementations in many
different fields. However, although researchers have long recognised the neces-
sity of epistemic modal operators in its language, this research venue did not
attract much attention. Moreover, existing epistemic extensions of ASP in the
literature are not fully satisfactory either in the sense that they still propose unin-
tended world views for some epistemic logic programs, and new counterintuitive
results may possibly be found as well in the future. To that end, Cabalar et al.
have recently proposed a candidate structural property of such programs called
epistemic splitting to formally support a possible semantics proposal of epistemic
ASP programs. In this paper, we first introduce our recent epistemic extension
of answer set programming (ASP) called epistemic ASP (EASP). EASP has a
simple language. Its epistemic answer set semantics is a natural generalisation
of ASP’s original answer set semantics. Moreover, EASP provides a solution to
unintended results discussed in the literature, especially for programs with con-
straints. However, since the epistemic answer set semantics of EASP does not
satisfy epistemic splitting property, we improve our semantics approach and pro-
pose a more natural epistemic extension of answer sets called stable S5 models.
Finally, the main theorem of this paper shows that the stable S5 model semantics
of EASP is compatible with epistemic splitting property as a formal support.

Keywords: answer set programming, epistemic specifications, modal logic S5, stable
models, answer sets, world views, autoepistemic equilibrium models, epistemic answer
sets, subjective constraints, epistemic splitting property

1 Introduction

Answer set programming (ASP) [1] is an approach to declarative programming, and its
semantics is given by answer sets—consistent sets A of literals1 in which p < A or ∼p <
A, understood as minimal classical models of a program with respect to subset relation.

? I want to thank Andreas Herzig, Luis Fariñas del Cerro, Pedro Cabalar, Jorge Fandinno,
Michael Gelfond, Patrick Thor Kahl, Thomas Eiter, Yi-Dong Shen for their research related to
this paper and the anonymous reviewers for their valued comments on the drafts of this work.

1 In ASP, a literal is a propositional variable p or a strongly-negated propositional variable ∼p.



Answer set semantics [2] provided a correct interpretation of negation as failure (NAF)
and related ASP to nonmonotonic reasoning. Today, ASP has many applications in
different fields of science and technology.

Despite its success, ASP is not strong enough to correctly represent incomplete
information, exactly in situations where there are multiple answer sets of a program
because NAF performs in each answer set separately and cannot reason about over a
whole range of answer sets. Since 1991, a considerable amount of ASP research has
focused on this problem, none of which has however received a general approval so far
by the logic programming community.

The first approach of this line of research is Gelfond’s epistemic specifications [3]:
he extended ASP with epistemic modal operators, which are able to quantify over be-
lief set collections. (Belief sets are analogous to answer sets in structure, so researchers
usually prefer calling them answer set collections.) The interpretation of this new lan-
guage is in terms of a world view—a maximal collection of belief sets about a world
reflected by an epistemic logic program. Hence, a world view is a (3-valued) S5 model
(set of valuations). Similar to the answer set semantics, the world view semantics is also
reduct-based. However, different from the reduct definition of the former where we only
eliminate NAF, here the goal is, in principle, to remove epistemic modalities. Thus, the
reduct ΠA of an epistemic logic program Π with respect to a world view candidate A
is an ASP program which may include NAF as well. In both semantics, the selection
of these special models from among all models of a program is in two steps: first, we
compute the reduct of a program by a candidate model (a valuation or a set of valua-
tions, depending on the context); second, we construct the collection A of all answer
sets of this reduct. If the candidate model which is a (possibly empty) set of literals in
ASP, is an element of A, then we call it an answer set. In epistemic specifications, if
the candidate model (which is a collection of sets of literals, similarly toA in structure)
equalsA, then we call it a world view of the original program.

Since Gelfond’s first version, several semantics proposals have been suggested for
epistemic specifications. The majority are reduct-based world view semantics: while
some of them offer a slightly different refinement of the preceding [4,5,6,7,8] in or-
der to correct unintended results, some others propose significantly different definitions
of reducts and world views [9,10]. There is also another kind of approach, inspired
by Kripke semantics of modal logics over a more general language [11,12]. The rest
[13,14,15,16] are based on an epistemic extension of Pearce’s equilibrium model ap-
proach [17,18] again over a larger language. As [13] embeds Gelfond’s outdated ver-
sion, it is out of our consideration. [14,15] propose autoepistemic equilibrium models
(AEEMs) as maximal epistemic equilibrium models under set inclusion and a special
preorder called preference ordering on S5 models. Then, [16] comes up with a new
epistemic extension of equilibrium models called founded autoepistemic equilibrium
models (FAEEMs), which satisfy both epistemic splitting property [19] and founded-
ness property. This new semantics proposal is based on a direct combination of Moore’s
autoepistemic logic [20] and Pearce’s equilibrium logic in a different way from Fariñas
et al.’s AEEMs [15]. (Note that AEEMs by Fariñas et al. do not satisfy the properties of
foundedness and epistemic splitting.) To sum it up, the (to a certain extent) successful
approaches of the day are [7,9,15,16].



In this paper, we first introduce and then slightly improve our recent epistemic ex-
tension of ASP called epistemic ASP (EASP) [21]. The semantics of our first approach
is given by epistemic answer sets (EASs), which are, in structure, similar to world
views. The main advantage of our approach over previous semantics proposals is its
similarity to answer set semantics of ASP. Moreover, it seems to perform well both
with cyclic and acyclic programs, giving intuitive results. Especially, it offers a solution
to the recent constraint problem discussed in the literature [8,22]2. To spell it out, in
EASP, aligning with ASP, constraints (headless rules) are used to eliminate possible
belief sets of epistemic answer sets—we can refute whole epistemic answer set or re-
move just some of its belief sets, violating the constraint. Regretfully, this first version
[21] does not satisfy Cabalar et al.’s epistemic splitting property [23,22] as recognised
by one of the reviewers via a counterexample (see Example 6). Thus, we slightly im-
prove the EAS semantics of EASP and prove that the resulting stable S5 model seman-
tics satisfies epistemic splitting property as a formal support for our approach. Note that
all proposed semantics trials in the literature fail to satisfy this property except [3,12],
but they suffer most, among others, the counterintuitive behaviour of cyclic programs.
However, very recently, Fandinno [19] has shown that Cabalar et al.’s founded autoepis-
temic equilibrium model approach [16] also satisfies epistemic splitting property.

The paper is organised as follows. Section 2 introduces our recent epistemic ex-
tension of ASP called EASP: we first propose the epistemic answer set semantics and
then compare it with existing approaches through some examples. Section 3 recalls
epistemic splitting property. Section 4 revisits the semantics approach of EASP and
proves that the improved version called the stable S5 model semantics is compatible
with epistemic splitting property. Section 5 concludes the paper with future work plan.

2 Epistemic Answer Set Programming

This section introduces epistemic answer set programming (EASP) [21]. We begin with
a discussion on our motivation and the main differences with other approaches.

Our main motivation stems from the above-mentioned problem of programs with
constraints. Moreover, we would like to offer a more natural generalisation of ASP.
Indeed, we extend the syntax of ASP through the same structure of program rules: we
do not allow NAF to appear in a literal formation. NAF can only precede literals in the
body of a rule as in ASP. Note that in epistemic specifications, NAF appears in a literal
formation as notK , notKnot , Knot.

The semantics of the new language is via an epistemic answer set, which is a
straightforward generalisation of the answer set notion in ASP. Different from the world
view semantics of epistemic specifications, our approach exploits a two-fold computa-
tion procedure, by splitting the program into two parts: we first look for if the candidate

2 In ASP, constraints function regularly, i.e., they exclusively rule out answer sets violating
them. However, in epistemic specifications, inserting a constraint into a program may now
bring out a completely new world view with different belief sets, not appearing in the world
view of the original program. The reason is because here constraints show their effects on its
belief sets separately rather than a world view itself as a whole. So, not only Kahl’s all versions,
but also [15,9] suffer from unintended results produced over programs with constraints.



model, which is involved in the reduction process, is a maximal minimal model of the
first (main) part. The minimality condition is understood in the sense of set inclusion.
It is given by checking the minimality of each set making up the biggest possible col-
lection, again with respect to set inclusion. The second maximality condition makes
maximum possible subjective literals in the form of K l and K̂ l that appear in the pro-
gram rules, respectively false and true. Our reduct definition is oriented to eliminate
NAF, aligning with that of ASP. So, our reduct is always a positive program containing
no NAF in it. This is similar to the method used for searching for answer sets. However,
existing reduct definitions simplify the program by removing subjective literals in the
form of K l, M l, notK l and notM l (but, not ‘not l’) for an objective literal l. Sec-
ond, we check if such maximal minimal models of the first part are compatible with the
second part, composed of (only) all constraints of the original program. So, we aim to
solve the recent constraint problem discussed in the introduction.

2.1 The Language of EASP (LEASP)

The languageLEASP extends that of ASP by epistemic modal operators K and K̂. Literals
(λ) of LEASP are of two types: objective literals (l) and subjective literals (g).

l g
p | ∼p K l | K̂ l

in which p ranges over a set P of propositional variables3. LEASP has two negations;
strong negation ∼ and NAF (aka, default negation) not : not λ is read “λ is false by
default” which means there is no evidence for λ, and so the query λ? is undetermined.

A rule r is a logical statement of the form head(r) ← body(r). In particular, a rule
r : head(r)← body(r) of EASP has the following explicit structure

λ1 or . . . or λk ← λk+1 , . . . , λm ,not λm+1 , . . . , not λn

in which λi’s are objective or subjective literals for every i, 0 ≤ i ≤ n with 0 ≤ k ≤ m ≤
n. Different from epistemic specifications, we allow K l and K̂ l to appear in head(r).
When k = 0, we suppose head(r) to be ⊥ and call r a constraint, but we disregard ⊥.
When n = k, we suppose body(r) to be > and call r a fact. In this case, we disregard
both > and←. When n = m (i.e., r does not contain NAF), we call it a positive rule.

An epistemic logic program is a finite collection of rules of epistemic specifications
(but here, those of EASP). Similarly, we call a program composed of only positive
rules positive. When we restrict λi’s to objective literals, the resulting program is a
disjunctive logic program. Hence, EASP rules are conservative extensions of ASP’s
disjunctive rules. As we follow the same structure, extensions to richer languages are
straightforward via the main ASP track.

Example 1. [Gelfond’s scholarship eligibility program]

3 The use of variables in epistemic specifications is understood as abbreviations for the collec-
tion of their ground instances. Thus, for simplicity, in this paper we restrict the language LEASP

to the propositional case.



Let X denote an arbitrary applicant in the domain then we have:
% college rules to decide eligibility for scholarship

eligible(X)← highGPA(X)
eligible(X)← f airGPA(X),minority(X)
∼eligible(X)← ∼highGPA(X),∼ f airGPA(X)

% data for a student called Mike given as a disjunctive information

highGPA(mike)or f airGPA(mike)

% an interview is required if applicant eligibility is not determined

interview(X)← notK eligible(X),notK∼eligible(X)

The ASP program composed of first 4 rules above has two answer sets:
{highGPA(mike), eligible(mike)} and { f airGPA(mike)}. Obviously, Mike’s eligibility
cannot be determined. To entail an interview (i.e., to see interview(mike) in both sets),
NAF alone is not sufficient anymore, and so we need modalities which are able to quan-
tify over these answer sets.

Example 2. [formalisation of Closed World Assumption (CWA)]

CWA: p is assumed to be false if there is no evidence to the contrary.

∼p← notK p

CWA is expressed in ASP by ∼p←notp. This representation is problematic, espe-
cially when there is more than one answer set. Let Π = {por q , ∼p←notp}. Π has
two answer sets: {p} and {q,∼p}. Although p cannot be determined with respect to these
answer sets, we cannot conclude ∼p since it is not included in both of these sets. This
result is unintended. Thus, we again require modalities that allow us to quantify over
answer sets.

2.2 Epistemic Answer Set Semantics of EASP

The semantics of EASP is given by epistemic answer sets (EASs) which are, in struc-
ture, similar to world views of epistemic specifications.

Let Π be a positive EASP program. We first separate Π into two disjoint subpro-
grams, Πm and Πc. The set of all constraints rc ∈ Π constitutes Πc. This is the part of
the program where we decide the ultimate EASs of Π after we evaluate the candidate
EASs as follows: refute, accept or reorganise. The set Π \Πc forms the main part of the
program Π , which we call Πm. This is the part of Π where we determine the candidate
EASs. Thus, we ensure constraints to behave as in ASP.

We begin with computing the EASs of Πm, each of which is then involved in an
evaluation process carried out in Πc. However, if Πm = ∅, then EAS(Π) = EAS(Πc),
where EAS(Π) denotes the set of all epistemic answer sets of Π . In this case, EAS(Π) ={
{∅}

}
or EAS(Π) = ∅. For instance, EAS({ ←p}) =

{
{∅}

}
and EAS({ ←not p}) = ∅. If

EAS(Πm) = ∅, then EAS(Π) = ∅. When Πc = ∅, we have EAS(Π) = EAS(Πm).



Truth Conditions Let O-Lit be the set of all objective literals of LEASP. Let A ⊆ 2O-Lit

be a nonempty collection of consistent sets of objective literals, and letA0 ⊆ A. Then,
we call the pair 〈A,A0〉 a multi-pointed S5 model withA0 being the set of designated
worlds. When A0 = {A}, we call it a single-pointed S5 model and simply denote it by
〈A, A〉. Satisfaction of literals is defined by: for an objective literal l ∈ O-Lit,

A, A |= l if l ∈ A;
A, A |= not l if l < A;
A, A |= K l if l ∈ A′ for every A′ ∈ A;
A, A |= notK l if l < A′ for some A′ ∈ A;
A, A |= K̂ l if l ∈ A′ for some A′ ∈ A;
A, A |= not K̂ l if l < A′ for any A′ ∈ A.

Note that satisfaction of an objective literal l is independent ofA, while satisfaction of
subjective literals K l and K̂ l is independent of A. Thus, we writeA |= K l andA |= K̂ l,
or A |= l. Then, satisfaction of an EASP program Π is defined by: for every rule r ∈ Π ,

A, A |= r viz. “A, A |= body(r) implies A, A |= head(r)′′.

Definition 1 (weakening of a point in an S5 model). Given a nonempty collection
A ⊆ 2O-Lit of sets of objective literals, let s :A → 2O-Lit be a (subset) map such that
s(A) ⊆ A for every A ∈ A. Then, a weakening of A at a point A ∈ A is identified with
〈s[A],s(A)〉4 such that s , id onA and s|A\{A} = id, by which we take a strict subset
of A ∈ A and do not modify the rest. We say that 〈s[A],s(A)〉 is weaker than 〈A, A〉 on
A ∈ A and denote it by 〈s[A],s(A)〉� 〈A, A〉.

We now define a nonmonotonic satisfaction relation |=∗ for S5 models, involving
a minimisation of truth property based on set inclusion over each set A making up a
collectionA. Intuitively, this condition says that none of the weakenings of 〈A, A〉 is a
model of a program Π for every A ∈ A.

Definition 2 (generalisation of the truth-minimality criterion of ASP to EASP).
Let A ⊆ 2O-Lit be a nonempty collection of consistent sets of objective literals, and let
A ∈ A. Let Π be a positive EASP program. Then, we haveA, A |=∗ Π if and only if

A, A |= Π and s[A],s(A) 6|= Π for every map s such that 〈s[A],s(A)〉� 〈A, A〉.

Thus,A is a minimal model of Π ifA, A |=∗ Π for every A ∈ A.

Example 3. Consider the EASP program Σ, given in the following split form:

Σ =

por q←
s← q
r ← K p

Σm ∪ ← K̂ r

Σc

Note that Σ is a positive program. We first compute that
{
{p}, {q, s}

}
is a minimal model

of Σm: indeed,
{
{p}, {q, s}

}
|= Σm

5 while its only weakening
{
∅, {q, s}

}
refutes it. Likewise,

4 s[A] is the image ofA ⊆ 2O-Lit under s, and s(A) is the value of s at A ∈ A.
5 In an explicit representation, we underline the designated worlds of a pointed model.



{
{p}, {q, s}

}
|= Σm while all its weakenings, i.e.,

{
{p}, {q}

}
,
{
{p}, {s}

}
and

{
{p}, ∅

}
do not

satisfy it. Clearly, {{p, r}} and {{q, s}} are the other minimal models of Σm, however these
are counterintuitive models6 of Σm and so should be eliminated.

As shown above, minimality of truth does not always guarantee intuitive results. So,
we introduce other orderings to choose intended ones among all minimal models (with
respect to “truth”) of a program Π . Inspired by [9], we first define the set of epistemic
negations in Π (regardless of being negated)

Ep(Π) = {notK l : K l appears in Π} ∪ {K̂ l : K̂ l appears in Π}.

Then, we take its subset ΦA = {ϑ ∈ Ep(Π) : A |= ϑ} with respect to a nonempty
collectionA ⊆ 2O-Lit of sets of objective literals. Using this set, we define a Π-indexed
preorder �Π between S5 models as shown below:

A �Π A
′ if and only if ΦA ⊆ ΦA′ .

The strict version of �Π is given as usual:A ≺Π A
′ if and only if A �Π A

′ and A′ �Π

A. IfA �Π A
′ and A′ �Π A, thenA is said to be equivalent toA′ with respect to �Π ,

and this equivalence is denoted byA ≈Π A
′.

Definition 3 (epistemic answer set). Let A be a nonempty collection of consistent
sets of objective literals. Then A is an epistemic answer set (EAS) of a “constraint-
free” program Π if

1. A is a minimal model of Π ;
2. there is no minimal modelA′ of Π such thatA ≺Π A

′;
3. there is no minimal modelA′ of Π such thatA ⊂ A′.

The second and third items say thatA is maximal with respect to �Π and ⊆ respec-
tively. They are used together to minimise knowledge. In particular, item 2 meansA to
make maximum (possible) amount of subjective literals K l appearing in Π false and
maximum (possible) amount of subjective literals K̂ l appearing in Π true.
Example 3, cont. We have seen that Σm has 3 minimal models:

{
{p, r}

}
,
{
{q, s}

}
and{

{p}, {q, s}
}
. Among these, we have such an order: ∅ = Φ{{p,r}} ⊂ Φ{{p},{q,s}} = Φ{{q,s}} =

{notK p} because Ep(Σm) = {notK p} and while {{p, r}} makes K p true, the last
two make it false. Thus,

{
{p, r}

}
≺Σm

{
{q, s}

}
≈Σm

{
{p}, {q, s}

}
. Then, since

{
{q, s}

}
⊂{

{p}, {q, s}
}
, we have EAS(Σm) =

{{
{p}, {q, s}

}}
.

When Π contains constraints (that is, when Πc , ∅), we first compute EAS(Πm) as
explained above. Then, we evaluate eachA ∈ EAS(Πm) with respect to their behaviour
on Πc: let ϕ =

∨
rc∈Πc

body(rc). Then for everyA ∈ EAS(Πm) and every A ∈ A,

6 Singleton minimal models of a program are sometimes source of a problem in capturing intu-
itive results because they do not allow us to quantify over possible belief sets: for a singleton
set, Kp and p are of no difference, as well as notKp and notp. Thus, an EASP program per-
forms like an ASP program, and we may obtain “unjustified” minimal models. For instance,
in Σm, if we replace Kp with p, the resulting ASP program has the answer sets {p, r} and {q, s}.
Note that {{p, r}} and {{q, s}} are the minimal models of Σm. To us, this is one of the difficulties
in finding a suitable semantics for EASP.



– ifA, A 6|= ϕ, then we accept A and call itAaccept;
– ifA, A |= ϕ, then we eliminateA.
– Finally, we reorganise the rest in such a way that we take the biggest possible

subset Anew ⊆ A viz. Anew is still a minimal model of Πm and Anew, A 6|= ϕ for
every A ∈ Anew. In other words,Anew turns intoAaccept.

As a result, EAS(Π) is the collection of all Aaccept’s and Anew’s. If Πc contains con-
straints composed of only (negated) subjective literals, then we either refute or accept
the epistemic answer sets of Πm.

Example 3, cont. Since
{
{p}, {q, s}

}
6|= K̂ r and

{
{p}, {q, s}

}
6|= K̂ r, we accept

{
{p}, {q, s}

}
.

Consequently, EAS(Σ) =
{{
{p}, {q, s}

}}
.

Now, we will see how to find epistemic answer sets of an arbitrary EASP program
(which may include NAF as well).

Definition 4 (generalisation of the reduct definition of ASP to EASP). Let Π be an
arbitrary EASP program. Let A ⊆ 2O-Lit be a nonempty collection of consistent sets of
objective literals, and let A ∈ A. Then, the reduct Π 〈A,A〉 of Π with respect to 〈A, A〉 is
given by replacing every occurrence of negated literals notλ in Π by

R.1 ⊥ ifA, A |= λ (for λ = l if A |= l; for λ = K l ifA |= K l);
R.2 > ifA, A 6|= λ (for λ = l if A 6|= l; for λ = K l ifA 6|= K l).

Thus,A is a minimal model of Π ifA, A |=∗ Π 〈A,A〉 for every A ∈ A.

Example 4. Consider the EASP program Γ, given in the following split form:

Γ =

p← not∼q
∼q← not p

r ← notK p

Γm ∪ ← notK∼q

Γc

Then,
{
{p, r},

{
∼q, r

}}
is a minimal model of Γm. Indeed:

p← >
∼q← ⊥

r ← >

Γ{{p,r},{∼q,r}}
m and

p← ⊥
∼q← >

r ← >

Γ{{p,r},{∼q,r}}
m .

While
{
{p, r}, {∼q, r}

}
|= Γ

{{p,r},{∼q,r}}
m , all its weakenings, i.e.,

{
{p}, {∼q, r}

}
,
{
{r}, {∼q, r}

}
and

{
∅, {∼q, r}

}
refute it. Similarly,

{
{p, r}, {∼q, r}

}
|= Γ

{{p,r},{∼q,r}}
m , while all its weaken-

ings, i.e.,
{
{p, r}, {∼q}

}
,
{
{p, r}, {r}

}
and

{
{p, r}, ∅

}
refute it. Obviously,

{
{∼q, r}

}
and

{
{p}

}
are the other (counterintuitive) minimal models of Γm.

Note that Ep(Γm) = {notK p} and
{
{p}

}
|= K p, but the other minimal models of Γm

do not satisfy it. Thus, we have the following order:
{
{p}

}
≺Γm

{
{∼q, r}

}
≈Γm

{
{p, r}, {∼q, r}

}
.

Then, by using subset inclusion, we conclude that EAS(Γm) =
{{
{p, r}, {∼q, r}

}}
. How-

ever, since
{
{p, r}, {∼q, r}

}
|= notK∼q, it fails to be the epistemic answer set of Γ

(refute!). Consequently, EAS(Γ) = ∅.



Example 5. Consider the program ∆, given in a split form:

∆ =
por q
r or s← notK p

}
∆m ∪

← r
}
∆c

First, ∆m has 13 minimal models:A1=
{
{p}

}
,A2=

{
{q, r}

}
,A3=

{
{q, s}

}
,A4=

{
{p, r}, {q, s}

}
,

A5=
{
{q, r}, {q, s}

}
, . . . and A13=

{
{p, r}, {q, r}, {p, s}, {q, s}

}
. You can compute them by

using simple combination. (Note that we cannot take
{
{p, r}

}
and

{
{p, s}

}
, but

{
{p}

}
due

to truth minimality, and we exclude
{
{p, r}, {p, s}

}
among ones of cardinality 2.) Clearly,

we have such an order:A1≺∆mA2≈∆mA3≈∆m · · · ≈∆mA13. Then sinceAi ⊂ A13 for every
i = 2, 3, . . . , 12, we have EAS(∆m) = {A13}.

Second, since
{
{p, r}, {q, r}, {p, s}, {q, s}

}
|= r, we have to remove the designated

worlds {p, r} and {q, r} from this collection, resulting in
{
{p, s}, {q, s}

}
(reorganise!).{

{p, s}, {q, s}
}

is a minimal model of ∆m. (Note that ∆{{p,s},{q,s}}m ={por q , r or s} and
then, the result is clear.) Thus, EAS(∆) =

{{
{p, s}, {q, s}

}}
.

If we further evaluate
{
{p, s}, {q, s}

}
with respect to the constraint ←Ks, then we

have EAS(∆∪{ ←Ks}) = ∅ since
{
{p, s}, {q, s}

}
|= Ks. However, if we consider the effect

of ←Ks over ∆m, then we have EAS(∆m∪{←Ks}) = EAS(∆m) = {A13} sinceA13 6|= Ks.

The table below contains more examples on EASP programs containing arbitrary
constraints. The following section briefly recalls epistemic splitting property by Cabalar

EASP programs Epistemic answer sets
por q none
← notK p
por q none
r ← notK q
← p

p← not q none
q← not p

r ∨ s← notK p
← r
← s

p← not q none
q← not p
r ← K p
← not r

Table 1. Some EASP programs containing constraints and their epistemic answer sets.

et al. and shows (via a counterexample given by one of the reviewers who read the draft
of this paper) that this property does not hold for the epistemic answer set semantics.



3 Epistemic Splitting Property

We here discuss a formal property of epistemic logic programs, proposed and named
epistemic splitting by Cabalar et al. [23,22]. This property allows for a kind of modular-
ity, ensuring a reasonable behaviour of programs whose subjective literals are stratified.
The idea is to separate an epistemic logic program Π into two disjoint subprograms,
top and bottom, among which top queries bottom via its subjective literals, and bottom
never refers to head literals of top. If splitting is the case with respect to a set U of
literals, then we calculate the world views7 of Π through the following steps:

1. we first compute the world viewsAb of bottom of Π ;
2. then, for each Ab, we take a partial epistemic reduct of top of Π by replacing its

subjective literals whose literals are included in U w.r.t. their truth values inAb;
3. next, we compute the world viewsAt of this reduct;
4. finally, we take the union of every pair of the elements of Ab and At and result in

the world views of the original program Π , answering the queried information.

Most of the proposed semantics of epistemic logic programs in the literature fail
to satisfy this property. Interestingly, Gelfond’s first version [3], which suffers most
among others, the counterintuitive behaviour of cyclic programs8 succeeds in satisfying
epistemic splitting property. The other semantics that passes this test is Truszczyński’s
approach [12]9. Cabalar et al. [22] argue that the semantics approaches of epistemic
logic programs fail to discuss counterintuitive results produced over acyclic programs
while they are trying to correct the behaviour of cycles. As a result of this, they propose
a new semantics called founded autoepistemic equilibrium models (FAEEMs) [16] to
overcome the obstacles of the previous approaches. They also discuss that the FAEEM
semantics satisfies epistemic splitting property. However, this subject in general, i.e.,
the appropriate epistemic extension of ASP, is still under discussion and in progress.

First of all, let Pϕ denote the set of propositional variables occurring in a syntactic
construct (literal, body, head, rule, etc.) ϕ. Moreover, when a literal ∼p appears in a
program Π , let us assume ∼p to be a “fresh” variable p̃ in P and the constraint ⊥←p, p̃
to be implicitly included in Π . Thus, in this part, we treat an objective literal as a propo-
sitional variable. Then, for a rule r ∈ Π , we divide body(r) into two disjoint parts,
bodyob(r) and bodysub(r), in such a way that the former is composed of all (negated)
objective literal conjuncts of body(r), and the latter contains all (negated) subjective
literal conjuncts of body(r).

Definition 5. A set U ⊆ P is an epistemic splitting set of an epistemic logic program Π
if for every rule r ∈ Π we have:

7 Notice that this process is semantics-dependent in the sense that each alternative semantics
for epistemic specifications computes their world views (AEEMs or EASs, depending on the
context) in a different way.

8 Gelfond’s approach [3] computes two world views
{
∅
}

and
{
{p}

}
for p ← K p. For this rule,

the world view
{
{p}

}
is counterintuitive, and this result was justified by almost all semantics

proposals in the literature.
9 Truszczyński’s approach [12] produces a world view

{
∅
}

for the program p←p,notp, which
departs it even from ASP.



(i) Pr ⊆ U or
(ii) Pbodyob(r)∪head(r) ∩ U = ∅.

When splitting is the case with respect to a splitting set U ⊆ P, we separate Π
into two disjoint subprograms, bottom (symbolised by ‘BU(Π)’) and top (symbolised
by ‘TU(Π)’): bottom and top contain the rules, respectively satisfying (i) and (ii) above.
The constraints rc with the condition “body(rc) = bodysub(rc)”, i.e., ones containing
only (negated) subjective literal conjuncts, are called subjective constraints. Thus, sub-
jective constraints satisfying Prc ⊆ U can be placed either in top or in bottom, but in
such a way that any possible partition should be disjoint and their union should give
rise to the whole program Π .

The (partial) subjective reduct ΠAU of a program Π with respect to A ⊆ 2P and
U ⊆ P is obtained by replacing each subjective literal g with Pg ⊆ U by: > if A |= g
or ⊥ otherwise. Note that this reduct definition is partial because it may still contain
subjective literals g such that Pg * U. Let EU(Π,A) be defined as the subjective reduct
of top of Π with respect toA ⊆ 2P and U ⊆ P:

EU(Π,A) def
= (TU(Π))AU . (1)

Then, a pair 〈Ab,At〉 is said to be a solution ofΠ w.r.t. an epistemic splitting set U if
Ab is a world view of BU(Π) andAt is a world view of EU(Π,Ab). Here, it is important
to notice that the solution 〈Ab,At〉 is semantics-dependent, and each approach provides
their own world views (AEEMs, FAEEMs, or EASs, depending on the context) with
respect to their semantics definition.

Definition 6. Let Π be an epistemic logic program (depending on the language, pro-
gram of epistemic specifications or EASP). Then, a semantics proposal of an epistemic
extension of ASP satisfies epistemic splitting property if for every epistemic splitting
set U ⊆ P of Π ,A is a world view (AEEM, FAEEM, or EAS) of Π if and only if there
is a solution 〈Ab,At〉 of Π with respect to U ⊆ P such that

A = Ab tAt = {Ab ∪ At : Ab ∈ Ab and At ∈ At}.

As recognised by one of the reviewers of this paper through the counterexample
below, the EAS semantics of EASP does not satisfy epistemic splitting property.

Example 6. Given the epistemic splitting set U = {p, q}, the EASP program

Ω :


p← not q
q← not p
r ← not r , notK q

can be split into its bottom and its top with respect to U respectively as follows:

Ω :
p← not q
q← not p

}
BU(Ω) ∪

r ← not r , notK q
}

TU(Ω)

Clearly, BU(Ω) has a unique EAS
{
{p}, {q}

}
. Then we compute EU(Ω,

{
{p}, {q}

}
) =

{
r ←

not r ,>
}

and see that it has no EASs. Thus, Ω would have no EASs if it satisfied
epistemic splitting property. However, Ω has a unique EAS

{
{q}

}
: note that Ω{{q}} is

equivalent to
{
{q}

}
. As a result, the EAS semantics does not satisfy this property.



4 Semantics of EASP revisited: stable S5 models

In this section we slightly improve the semantics of EASP and propose a more natural
generalisation of answer set semantics, compared to the EAS semantics. Different from
the previous semantics, we are now motivated by autoepistemic logic (or nonmonotonic
KD45) [24,25] to ensure knowledge-minimality and see that this time the resulting sta-
ble S5 model semantics satisfies Cabalar et al.’s epistemic splitting property.

Definition 7 (stable S5 model). Let A be a nonempty collection of consistent sets of
objective literals, and let Π be an EASP program. ThenA is a stable S5 model of Π if

1. for every A ∈ A, A, A |=∗ Π 〈A,A〉

2. for every A′ ∈ 2P \ A,

A, A′ 6|= Π 〈A,A
′〉 or A,s(A′) |= Π 〈A,A

′〉 for some subset map s such that s(A′) ⊂ A′.

As before, the first condition guarantees the minimality of truth condition of each world
making up stable S5 models. The second condition guarantees that such models are
maximum w.r.t. ignorance in a way that it is not possible to enlarge such models with
truth-minimal worlds. Thus our S5 models are stable w.r.t. both truth and knowledge.

Example 7. We begin with an easy program Λ = {p← K̂ p}. Different from most of the
approaches (the unique world view of Λ is usually given as

{
{p}

}
in the literature), we

obtain the unique stable S5 model
{
∅
}

for Λ. However, we can still discuss that our result
is intuitive because to deduce p we only have the rule p← K̂ p and we accept K̂ p true,
but we do not have enough evidence to justify K̂ p. Thus we believe that the intuitive
result for this program is still under discussion as opposed to the common view.

Example 3, cont. First note that Σ is a positive program, and so ΣA = Σ for any
A. Then also notice that only

{
{p}, {q, s}

}
and

{
{q, s}

}
satisfy Definition 7.1. However,{

{q, s}
}

does not satisfy Definition 7.2 because we can find a world {p} satisfying both{
{q, s}

}
, {p} |= Σ and

{
{q, s}

}
, ∅ 6|= Σ. As a result, only

{
{p}, {q, s}

}
is knowledge-minimal

and SM(Σ) =
{
{{p}, {q, s}}

}
where SM(Σ) denotes the set of all stable S5 models of Σ.

Example 4, cont. First of all, notice that only
{
{̃q, r}

}
satisfies Definition 7.1. How-

ever, it does not satisfy Definition 7.2 since we can find a world
{
{p, r}

}
satisfying{

{̃q, r}
}
, {p, r} |= Γ〈{{̃q,r}},{p,r}〉 (which is equivalent to the program {p, r} composed of

two facts p and q), and none of the enlarged models 〈
{
{q, s}

}
, {p}〉, 〈

{
{q, s}

}
, {r}〉 and

〈
{
{q, s}

}
, ∅〉 satisfies Γ〈{{̃q,r}},{p,r}〉. Consequently, we have SM(Γ) = ∅.

Example 6, cont. Remember that in this example
{
{q}

}
is the only candidate stable S5

model of the program Ω satisfying Definition 7.1. However, we can find a world {p}
extending the S5 model and this extension satisfies both

{
{q}

}
, {p} |= Ω〈{{q}},{p}〉 (note

that this reduct is equivalent to the fact p) and
{
{q}

}
, ∅ 6|= Ω〈{{q}},{p}〉. Thus, SM(Ω) = ∅.

Example 8. Now consider the 3rd example in Table 1, and call it Π3. It is easy to see
that the only S5 model of Π3 satisfying Definition 7.1 is

{
{p}

}
. However, Definition 7.2

does not hold for
{
{p}

}
: note that we can find a world {q} with which we extend our

model and the resulting model satisfies the following conditions:
{
{p}

}
, {q} |= Π 〈{{p}},{q}〉3

(this reduct is equivalent to the fact q) and
{
{p}

}
, ∅ 6|= Π

〈{{p}},{q}〉
3 . As a result, SM(Π3) = ∅.



Example 9. Finally, we take the last program in Table 1 and call it Π4. Among all S5
models of Π4,

{
{p, r}

}
is the unique model satisfying Definition 7.1. However, as before

there is a world {q, r} such that when we extend
{
{p, r}

}
with {q, r}, the resulting model

satisfies the following conditions:
{
{p, r}

}
, {q, r} |= Π 〈{{p,r}},{q,r}〉4 (this reduct is equivalent

to the program {q , r ← K p}), but none of the extended and then weakened models
〈
{
{p, r}

}
, {p}〉, 〈

{
{p, r}

}
, {r}〉 and 〈

{
{p, r}

}
, ∅〉 satisfies Π 〈{{p,r}},{q,r}〉4 . Thus, we conclude that

SM(Π4) = ∅.

The following theorem shows that the stable S5 model semantics of EASP is com-
patible with Cabalar et al.’s epistemic splitting property.

Theorem 1 Let U ⊆ P be an epistemic splitting set for an EASP program Π . Let
A ⊆ 2P be a collection of consistent sets of propositional variables. Then, we have:
A ∈ SM(Π) if and only if

A = Ab tAt for some solution 〈Ab,At〉 of Π with respect to U ⊆ P.

Proof. The proof is given in the appendix.

We now introduce a modal dependence relation between propositional variables
occurring in an EASP program Π . Let ∂Π be a binary relation defined on PΠ as follows:
(p, q) ∈ ∂Π if and only if

p ∈ Phead(r)∪bodyob(r) and q ∈ Pbodysub(r) for some rule r ∈ Π.

Then, we say that Π is modally stratified if we can find a (level) map σΠ : PΠ → N,
assigning an integer number n ∈ N to each propositional variable p ∈ PΠ in a way that:

σΠ (p) > σΠ (q) if and only if (p, q) ∈ ∂Π .

As an immediate consequence of Theorem 1, the stable S5 model semantics satisfies
the following properties:

First, Cabalar et al. prove that a semantics satisfying epistemic splitting also satisfies
subjective constraint monotonicity (see [23], Property 5 and Theorem 3). So, we have:

SM(Π ∪ {r}) ⊆ SM(Π)

for any EASP program Π and any subjective constraint r. This means that subjective
constraints rule out stable S5 models violating them.

Second, they show that a finite and modally stratified epistemic program Π has a
unique world view at most if the semantics proposal satisfies epistemic splitting and
supra-ASP (see [23], Property 3 and Theorem 2). Supra-ASP, i.e., “SM(Π) =

{
{A :

A is an answer set for Π}
}

or SM(Π) = ∅ for every ASP program Π”, is a consequence
of Definition 7. Now, let us illustrate their second result:

Example 10. Now we consider the modally stratified and finite EASP program Ω:

p← not q
q← not p

}
Ω1

r ← K p
}
Ω2

← notK r
}
Ω3



(Note that we immediately construct the modal dependence relation ∂Ω by simply using
Ω2, and it clearly equals {(r, p)} since r ∈ Phead(r←K p) and p ∈ Pbodysub(r←K p). We choose
the map σΩ : {p, q, r}→N as follows: 1 = σΩ(p) = σΩ(q) < σΩ(r) = 2.)

First, we take U = {p, q} and compute SM(Ω1) =
{{
{p}, {q}

}}
. Then, we construct

EU(Ω1 ∪Ω2,
{
{p}, {q}

}
): note that EU(Ω1 ∪Ω2,

{
{p}, {q}

}
) =

(
TU(Ω1 ∪Ω2)

){{p},{q}}
U = {r ←

⊥}. Clearly, SM(r ← ⊥) =
{
{∅}

}
. Thus, we conclude that SM(Ω1 ∪ Ω2) =

{{
{p}, {q}

}
t{

∅
}}
=

{{
{p} ∪ ∅, {q} ∪ ∅

}}
=

{{
{p}, {q}

}}
.

Second, we take U′={p, q, r} and compute EU′ (Ω,
{
{p}, {q}

}
) =

(
TU′ (Ω)

){{p},{q}}
U′ =(

Ω3
){{p},{q}}
U′ = { ←>}. Since SM(←>) = ∅, we have SM(Ω) = ∅.

5 Conclusion

In this paper, we first recall a recent epistemic extension of ASP called EASP. Then
we improve its semantics and show that the new stable S5 model semantics of EASP
satisfies Cabalar et al.’s epistemic splitting property. EASP is a strong rival to existing
approaches in the literature in the sense that: we introduce a standard and intuitive
semantics, aligning with that of ASP. The new reduct definition, which is similar to
that of ASP, will hopefully lead to an efficient implementation of an EASP program
solver, allowing the new language to be of more practical use. As future work, we will
search if ASP technology can be exploited to compute stable S5 models of a program.
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